Бизнес-класс

Эффективное обучение эффективности


Зенон Элейский

Зенон Элейский/Zenon Eleiski

Притворяясь, что не слышу хулы, я не замечу и похвалы.

Зенон Элейский


Зенон Элейский - древнегреческий философ, представитель Элейской школы, ученик Парменида. Аристотель назвал Зенона создателем диалектики, искусства выдвигать аргументы и опровергать чужие мнения. Для защиты учения Парменида о едином неподвижном бытии Зенон сформулировал ряд апорий («неразрешимых положений»), показав, что признание реальности множественности и движения ведет к логическим противоречиям. Из четырех десятков апорий наиболее известны апории о движении: «Дихотомия», «Ахилл и черепаха», «Стрела и Стадий» (Движущиеся тела). Все эти апории представляют собой доказательства от противного. Вместе с вариантом их решения изложены у Аристотеля.

В первых двух («Дихотомия» и «Ахилл и черепаха») предполагается бесконечная делимость пространства. Так, как бы быстро ни бежал Ахилл, он никогда не догонит медленную черепаху, потому что за то время, которое ему потребуется для того, чтобы пробежать половину намеченного пути, черепаха, двигаясь без остановки, всегда будет отползать еще немного, и этот процесс не имеет завершения, ибо пространство делимо до бесконечности. В двух других апориях рассматривается несводимость непрерывности пространства и времени к неделимым «местам» и «моментам». Летящая стрела во всякий фиксируемый момент времени занимает определенное место, равное своей величине – получается, что в рамках самого неделимого момента она «покоится», и тогда получается, что движение стрелы состоит из суммы состояний покоя, что абсурдно. Следовательно, стрела на самом деле не движется. На протяжении всей дальнейшей истории апории Зенона являются предметом внимания и споров среди философов, логиков, математиков (Лейбниц, Кант, Коши, теория множеств Кантора).

Апории Зенона Элейского явились важнейшим этапом на пути развития античной диалектики. Они оказали существенное влияние и на развитие философии в новое время, в частности на философское обоснование математики.

Зенон Элейский и античная философия

Зенон был учеником Парменида. Как говорит Платон в «Пармениде» он был высокого роста. Тот же Платон в «Софисте» называет его «Элейским Паламедом». По словам Аристотеля, он был изобретателем диалектики, как Эмпедокл — риторики. Был он человеком исключительных достоинств и в философии, и в политической жизни, сохранились его книги, полные большого ума.

Помимо прочих доблестей, Зенон отличался презрением к сильным мира сего, не уступая в этом Гераклиту.

Рассказывают, что он возмутился, когда его хулили, а в ответ на чей-то упрек сказал: «Притворяясь, что не слышу хулы, я не замечу и похвалы».

Аргументы Зенона привели к кризису древнегреческой математики, преодоление которого было достигнуто только атомистической теорией Демокрита. Основная мысль апорий Зенона (как и Парменида) состоит в том, что прерывность, множественность, движение характеризуют картину мира, как она воспринимается чувствами. Диалектика Зенона основывалась на постулате недопустимости противоречий в достоверном мышлении: появление противоречий, возникающих при предпосылке мыслимости множественности, прерывности и движения, рассматривается как свидетельство ложности самой предпосылки и в то же время свидетельствует об истинности противоречащих ей положений о единстве, непрерывности и неподвижности мыслимого (а не чувственно воспринимаемого) бытия.

Критику аргументов Зенона с позиций идеалистической диалектики дал Гегель.

Со времен Пифагора время и пространство рассматривались, с математической точки зрения, как составленные из множества точек и моментов. Однако они обладают также свойством, которое легче ощутить, нежели определить, а именно «непрерывностью». С помощью ряда парадоксов Зенон стремился доказать невозможность разделения непрерывности на точки или моменты. Его рассуждение сводится к следующему: предположим, что деление проведено нами до конца. Тогда верно одно из двух: либо мы имеем в остатке наименьшие возможные части или величины, которые неделимы, однако бесконечны по своему количеству, либо деление привело нас к частям, не имеющим величины, т.е. обратившимся в ничто, ибо непрерывность, будучи однородной, должна быть делимой повсюду, а не так, чтобы в одной своей части быть делимой, а в другой – нет. Однако оба результата нелепы: первый потому, что процесс деления нельзя считать законченным, пока в остатке – части, обладающие величиной, второй потому, что в таком случае изначальное целое было бы образовано из ничто. Симплиций приписывает это рассуждение Пармениду, однако кажется более вероятным, что оно принадлежит Зенону. В более полном виде этот довод против множественности неделимых величин приводит Филопон: «Зенон, поддерживая своего учителя, старался доказать, что все сущее должно быть единым и неподвижным. Доказательство свое он основывал на бесконечной делимости любой непрерывности. Именно, утверждал он, если сущее не будет единым и неделимым, но может делиться на множество, единого по сути вообще не будет (ибо если непрерывность можно делить, это будет означать, что ее можно делить до бесконечности), а если ничто не будет по сути единым, невозможно и множество, поскольку множество составлено из многих единиц. Итак, сущее не может быть разделено на множество, следовательно, есть только единое. Это доказательство может строиться и по-другому, а именно: если не будет сущего, которое неделимо и едино, не будет и множества, ибо множество состоит из многих единиц. А ведь каждая единица либо едина и неделима, либо сама делится на множество. Но если она едина и неделима, Вселенная составлена из неделимых величин, если же единицы сами подлежат делению, мы будем задавать тот же самый вопрос относительно каждой из подлежащих делению единиц, и так до бесконечности. Таким образом, если существующие вещи множественны, Вселенная окажется образованной бесконечным числом бесконечностей. Но поскольку этот вывод нелеп, сущее должно быть единым, а быть множественным ему невозможно, ведь тогда придется каждую единицу делить бесконечное число раз, что нелепо».

Аристотель вновь и вновь разрешает парадоксы Зенона как для геометрии, так и для физики, утверждая, что бесконечно малое существует лишь в потенции, но не в реальности. Для современной математики такой ответ неприемлем. Современный анализ бесконечности, в особенности в трудах Г.Кантора, привел к определению континуума, лишающему антиномии Зенона парадоксальности.

 

Источники:

http://www.krugosvet.ru

http://www.chronos.msu.ru

http://ru.wikipedia.org

http://slovari.yandex.ru



Добавить страницу в закладки

  • на главную
  • контакты
  • версия для печати
  • карта сайта
Яndex
 

Ближайшие клубыБлижайшие клубы

19 апреля
«Бизнес Новости»
Предварительная запись
«Клуб руководителей»

События и новостиСобытия и новости

01.06.2013
«Подбор сотрудников»

В компании «Бизнес Класс» активно работает направление по подбору сотрудников. Подробности >> 

Заповеди руководителяЗаповеди руководителя

Томас Ла Манc

Жизнь — это то, что случается с нами, пока мы строим планы на будущее.

 

Сделать стартовой